ADVANCING RNA DRUG DISCOVERY THROUGH SHAMAN PROTOCOL

Stefano Bosio^{a,b}, Mattia Bernetti^{a,b}, Matteo Masetti^a, Massimiliano Bonomi^c

a- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – University of Bologna, Bologna

b- Computational and Chemical Biology, Italian Institute of Technology, Genova

c-Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France

1. HIV-1 TAR as a pharmaceutical target

- The trans-activation response element (TAR) is an RNA stem-loop structure located at the 5' end of the HIV-1 genome [1].
- conformation of the stem-loop is fundamental for the interaction with its biological partners, namely Integrase (IN) and Tat protein [2].
- There is no structure available of the TAR-IN complex.
- The aim of the project is to identify **disruptors** of TAR-IN interactions.

2. SHAMAN protocol

SHAdow Mixed solvent metAdyNamics (SHAMAN) [3] is a computational tool for binding site identification in dynamic RNA structural ensembles. The architecture shown below simultaneously allows for the following:

- Exploring conformational landscape with molecular dynamics (MD) simulations.
- Identifying potential small-molecules binding site with the aid of probes and Metadynamics.

3. Systems setup

Since there is no available TAR-IN complex we decided to build our systems starting from a complex with a peptidomimetic of Tat (as it competes with IN).

We set up two different sets of simulations:

- Removing the peptide.
- Maintaining the peptide.

- 3 µs x replica RNA: ff99SB-ildn* + Parmbsc0 + χ_{OL3}
- Water: OPC

• SM: Sage 2.0

No peptide bound

4. Preliminary results

SHAMAPs

For each cluster representative, the output is a set of potential small molecule binding sites (SHAMAPs), each corresponding to a high-probability region occupied by at least one probe, ranked by binding free energy.

structural variability, we decided to further cluster the structures into more refined subclusters using the following:

- **G-vectors** [4] as the metric.
- QT clustering [5] as the algorithm.

Virtual screening

- 80 selected molecules will be experimentally tested as TAR-IN interaction disruptors.
- The use of G-vectors as metrics to refine the cluster analysis in SHAMAN will be integrated into the pipeline.
- A novel version of SHAMAN will be developed to better explore conformational flexibility

